Real spider silk is one of the toughest materials on Earth — proportionally tougher than steel

Real spider silk is one of the toughest materials on Earth — proportionally tougher than steel.

However, according to research published in the journal , engineers at Washington University in St.

Louis have one-upped Mother Nature, designing hybrid silk proteins that are more resilient. 

In 2018, Fuzhong Zhang, a professor of synthetic biology at the university, spliced silk-producing genes into bacteria and produced a recombinant fiber on par with spider silk.

Scroll down for video  Engineers at Washington University in St.

Louis have produced silk hybrid proteins in engineered bacteria they claim are stronger and tougher than some natural spider silks

‘After our previous work, I wondered if we could create something better than spider silk using our synthetic biology platform,’ Zhang .

So his team got to work further modifying the amino acid sequence of spider silk proteins to introduce some new properties, while keeping others.

A crucial ingredient in spider silk, natural or synthetic, are beta-nanocrystals, microscopic particles that increase flexibility and durability.

‘Spiders have figured out how to spin fibers with a desirable amount of nanocrystals,’ Zhang said.

‘But when humans use artificial spinning processes, the amount of nanocrystals in a synthetic silk fiber is often lower than its natural counterpart.’

To overcome this obstacle, the engineers introduced long protein sequences that have a high tendency to form beta-nanocrystals and are actually easier to produced in the lab.

The bacteria produced a hybrid polymeric amyloid protein with 128 repeating units, according to the report, resulting in a fiber with an average ultimate tensile strength of around 1,000 megapascals (MPa). 

Megapascal strength is a measure of how much force is needed to break a fiber of fixed diameter: In comparison, the tensile strength for structural steel is 400 MPa and for carbon steel it’s 841 MPa. 

For spiders, it ranges from .450 all the way up to 2000 MPa. 

Thanks to the increased number of nanocrystals, the fibers had an average toughness of around 161 Megajoules/m3, higher than Kevlar and all previous recombinant silk fibers, the researchers say—even higher than some natural spider silk fibers.   

‘This demonstrates that we can engineer biology to produce materials that beat the best material in nature,’ Zhang said.

The maybe not the absolute best—the silk of the wolf spider’ is the toughest biological material known to man, with an average toughness of  350 MJ/m3.

(Some have spun silk up to 520 MJ/m3.) 


Share this article


Still, Zhang’s team experimented with just a few of the thousands of potential protein sequence combinations, opening the door to even stronger fibers mimicking the properties of natural spider silk.

‘There seem to be unlimited possibilities in engineering high-performance materials using our platform,’ said lead author Jingyao Li, a PhD candidate in Zhang’s lab.

A closeup of the polymeric fiber with 128-repeated proteins created by Zhang’s team.

The engineered ‘spider silk’  has a tensile strength higher than common steel and is tougher than Kevlar

In 2018, Zhang’s team created a recombinant fiber on par with spider silk.

Now, they say, they’ve improved on Mother Nature. Pictured: A yellow garden spiders spinning a circular web

Researchers have long been working to re-create the incredible properties of spider silk: last month, organic chemists at the University of Cambridge reported they’d inspired by arachnids’ output that could be used to replace single-use plastics in many consumer products.

Ý kiến bạn đọc (0)

© 2021 Quảng Cáo Mai Hương. Thiết kế Website bởi Quang Cao Mai Huong.